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Abstract

The proposed project brings together three conjectures relating to En-coalgebras in spaces.

1 Introduction

The work of J. P. May on algebras over the little n-discs operad Dn [May06] provides us with both
a unifying perspective on cohomology operations and concrete models for homotopy commutativity.
Recently, Moreno-Fernández and Wierstra [MW19] have developed an Eckmann-Hilton dual theory
for the dual notion of coalgebras over Dn. In this theory, suspensions play the role of loop spaces.
This approach also sheds some light on homotopy groups of spheres, as we discuss in section 3.

The proposed PhD project is generally themed around En-coalgebras. In many contexts-particularly
geometry, these appear to be more natural than their algebraic counterpart. For example, topological
spaces are naturally a commutative such coalgebra which make singular chains of topological spaces
have the structure of E∞-coalgebras. Unfortunately, the theory of coalgebras over operads is less gen-
tle than that of algebras. For example, there are examples of non-trivial operads with no non-trivial
coalgebras at all [GL20]. Another problem is that the cofree-forgetful adjunction goes in the wrong
direction for us to be able to apply the Transfer Principle. It thus becomes difficult to define canonical
model structures on coalgebras, even when cofree coalgebras exist.

The purpose of our project is to employ En-coalgebras to study three classical problems in algebraic
topology. The first of these is homotopy operations, the second is the Hochschild-Konstant-Rosenberg
theorem and the last one is Mandell’s Theorem.

In Section 2, we discuss Moreno-Fernández–Wierstra theory of coalgebras in topological spaces.
Section 3 is about applying this theory to homotopy operations. In Section 4, we briefly discuss
the Hochschild-Kostant-Rosenberg theorem and extensions thereof. Finally, in section 5, we discuss
Mandell’s theorem and our proposed dualization of it.

2 Coalgebras over the little n-discs operad

It is difficult to define cooperads in topological spaces, because Top lacks any notion of base field, and
thus that of a dual space. We thus must make do with coalgebras over operads. This is defined as
follows. First, we define the coendomorphism operad CoEnd(X) of a topological space X to be the
operad whose S-module structure in arity n is the set of continuous maps fromX toX∨n, equipped with
the obvious Sn-action and composition maps. A Dn-coalgebra structure is then an operad morphism
θ : Dn → CoEnd(X). One can easily show that n-fold suspensions are naturally equipped with such a
structure via the pinch map and this naturally induces the Eckmann-Hilton dual of a Browder bracket.

In his master thesis, supervised by Felix Wierstra and Grégory Ginot, FLynn-Connolly established
a similar result in the category of simplicial sets. In this setting, defining the coendomorphism operad
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is made much more complex by the fact that simplicial sets are rarely fibrant. In particular, even if
one starts with a fibrant simplicial set X, the wedge product X∨n is essentially never a Kan complex.
Therefore, one has to make use of a fibrant replacement functor. There are two natural choices for
this. One can either use the singular chains on the geometric realisation, or Kan’s Ex∞ functor. It
was shown that simplicial suspensions admit an En-structure.

3 Applications to primary homotopy operations

We can also use Dn to study classical homotopy operations from a new perspective. In the cohomolog-
ical case [May70], it known that we can produce all primary operations this way. Because homotopy
operations come in only three flavours [Sto90]; Whitehead brackets, homotopy groups of spheres and
actions of the fundamental group on the higher homotopy groups, this produces some results about
the homotopy groups of spheres. The setup is as follows. As the n-sphere is an En-coalgebra, we have
a coalgebra map

Dn(k)× Sn → (Sn)∨k

This map is equivariant under the action of Sk and we can therefore take coinvariants to produce a
map.

Bn(k)× Sn → Sn

Here, Bn(k) is unordered configuration space. We can then observe that Bn(k)×{∗} lies in the kernel
of this map and so we can quotient out by it. One has a homotopy equivalence

Σn(Bn(k)) ∨ Sn ∼=
Bn(k)× Sn

Bn(k)× {∗}
where Σn(−) denotes n-fold suspension. Therefore, one has a canonical map

φn : Σn(Bn(k))→ Sn

In principle at least, homotopy operations are given by elements of the homotopy groups of Σn(Bn(k)),
but this is unsatisfactory for computational purposes. In practice, many interesting homotopy opera-
tions are given by n-stable equivariant cells of Dn(k). That is, given an equivariant CW-decomposition
of Dn(k), those cells that are attached via a map that becomes equivariantly null-homotopic after n-
suspensions. One can show that (for n > 0) this is a property preserved by operadic composition.

Example 3.1. For n = 2, we have homotopy equivalences Dn(2) ∼= Sn−1 and Bn(2) ∼= RPn−1. There
is always a degree 2 map [2] : Sn−1 → RPn−1. The composition

S2n−1 Σn([2])−−−−→ Σn(RPn−1)
φn−→ Sn

represents the Whitehead element of type (n, n) composed with the fold map (the Whitehead element
on its own can be produced via a very similar construction), and for n = 1, 3, 7 there is a stable
splitting

Σn(RPn−1) = Σn(RPn−2) ∨ S2n−1.

In these cases the compositions

S2n−1 i−→ Σn(RPn−1)
φn−→ Sn

where i is the inclusion S2n−1 ↪→ Σn(RPn−1), are the classical Hopf maps.

We conjecture that one can obtain all primary homotopy operations in this way.

Conjecture 1. All fundamental Whitehead classes and elements of the homotopy groups of spheres
may be expressed as n-stable equivariant cells of Dn(k) for some n, k ∈ N.

This conjecture turns out to be connected to a dual version of May’s recognition principle.

Conjecture 2. Let X be a (1 + n)-connected topological space possessing a Dn-coalgebra structure.
Then it has the weak homotopy type of the n-fold suspension of some 1-connected pointed space Y .
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4 The Hochschild–Kostant–Rosenberg Theorem

Hochschild (co)homology [Hoc45] is a (co)homology theory for associative algebras over rings. It
turns out to have a multitude of uses in geometry, topology and even physics. For example, the
second cohomology group controls the deformation theory of associative algebra. The classical HKR
theorem acts as a bridge between homological algebra and geometry, and is very closely related to
Kontsevich formality.

Theorem 4.1. Let k be a field and let A be a commutative k-algebra which is essentially of finite type
and smooth over k. Then there is an isomorphism of graded k-algebras

Φ : HH∗(A,A)
∼−→ Ω∗(A/k))

Dually, there is an isomorphism between the exterior algebra of derivations and the Hochschild coho-
mology

HH∗(A,A) ∼= Λ∗(Derk(A,A))

A higher order version of Hochschild cohomology was introduced by Pirashvili in [Pir00]. In this
theory, E∞-algebras assume the role of commutative algebras. The infinity category of E∞-algebras
is enriched in simplicial sets via

MapE∞−alg(A,B)n = Hom(A,B ⊗ C∗(∆n)),

and has all∞-colimits. In particular, one can therefore define the tensor product A�X• ∈ E∞−alg of
an E∞-algebra A and a simplicial set X•. This means that for every E∞-algebra B there is a natural
equivalence

MapE∞−alg(A�X•, B) ∼= MapsSet(X•,MapE∞−alg(A,B))

When A is a CDGA, one can choose a model such that the E∞-algebra A � X• is a CDGA, which
admits a very concrete description [Gin17]. One can use this to show the following

Proposition 4.2. Let A be a CDGA over a field of characteristic 0. Then A�S1 is usual Hochschild
chain complex C∗(A,A), where S1 is the usual simplicial model for the unit circle.

We are now in a position to state the generalized HKR conjecture.

Conjecture 3. Let X be a formal simplicial set of finite type in each degree. Let A be a CDGA.
Suppose that (Sym(V ), d) is a cofibrant, quasi-free resolution of A. Then there is a natural equivalence

A�X
∼−→ Sym(V ⊗H∗(X), dX)

We call Sym(V ⊗H∗(X), dX) the higher X-shaped tangent complex of A ∼= (Sym(V ), d). Moreover, if
f : X → Y is a formal map, we have a homotopy commutative diagram

A�X (Sym(V ⊗H∗(X)), dX)

A� Y (Sym(V ⊗H∗(Y )), dY )

id�f

∼

Sym(id×H(f∗))

∼

The differential dX is defined as follows. Let ∆(n−1) be the iterated coproduct on H∗(X). Then, using
Sweedler notation, define

∆(n−1)(α) = Σα(1) ⊗ · · · ⊗ α(n)

and, for v ∈ V let
d(v) = Σv(1) · · · v(n)

where v(1), . . . v(n) ∈ V. Then dX is the unique derivation extending the product

dX(v ⊗ α) = Σ(v(1) ⊗ α(1)) · · · (v(n) ⊗ α(n)))

The above statements may be dualised.
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Remark 4.3. Ginot has shown this in the case where X is an n-sphere.

Remark 4.4. The tensor product

� : E∞−alg × sSet→ E∞−alg

ought to factor through E∞-coalgebras. This should allow us to make the dependence of the HKR
theorem on formality very explicit.

Remark 4.5. The homology of X is naturally a cocommutative coalgebra. The tensor product
V ⊗ H∗(X) is therefore the tensor product of an algebra and coalgebra (recall that the category of
algebras is enriched over coalgebras).

Remark 4.6. The infinity category of CDGAs over a commutative ring R containing the rationals is
equivalent to the infinity category of E∞-algebras of chain complexes over R (see, for instance [Lur17,
Proposition 7.1.4.11]). Therefore, if we work rationally, we can replace the word CDGA everywhere
above with the word E∞-algebra.

Motivation 4.7. One of the motivation for studying the higher HKR quasi-isomorphism comes from
derived algebraic geometry and mathematical physics. Indeed, in this context one can define derived n-
Poisson (dg-)schemes (or stacks)[Pan+13] X, which is a data for instance provided by (the observables
of) a n-dimensional quantum field theory. The classical Kontsevich theorem is the n = 1-case.

In this higher context one aims to deform the sheaf of functions OX into an E1-algebra structure on
OX [[~]] (in the smooth affine case) or rather to deform its symmetric monoidal category of left modules
into an En−1-monoidal category locally equivalent to modules over an En-deformation of OX [[~]]. The
higher Hochschild cochain complexes and their En+1-structure are the complexes controlling those
deformations while their cohomology are precisely the higher analogues of polyvector-fields for higher
Poisson structures.

Application 4.8. Let M be a topological space and A be a cdga rational model for M . There is a
canonical algebra map

C∗(Map(X,M)) −→ A�X

induced by the Chen iterated integrals, see [GTZ10]. This map is an equivalence when M is dim(X)-
connected. There is a dual map from chains on the mapping space to higher Hochschild cochains as
well.

One of the goals of the project is to give explicit models for the above mapping spaces Map(X,M)
as well as the (partial) n+ 1-dimensional field theories structure carried away by their singular chains
when X is of dimension n induced by higher string topology operations (aka brane topology), in
particular to give an explicit description of those En+1-structure in terms of the cotangent complex
Sym(V ⊗H∗(Sn)).

5 Mandell’s Theorem

This latter project is to be studied at the ned of the thesis. Much of algebraic topology for the last
century been concerned with the quest for ever more complete algebraic invariants of spaces. The
traditional picture - cohomology groups, cup products and Steenrod operations - has recently been
superseded by the more general structure of algebras over operads. A key development in this direction
occurred in 2006, when Mandell showed that this perspective provides us with a complete invariant
of spaces.

First, recall that the integral cochains complex of a space X is equipped with the structure of an
E∞-algebra via the action of the operad EZ whose S-module structure in arity n is the set of natural
transformations between the functors C∗(−,Z)⊗n and C∗(−,Z) and with composition performed in
the obvious way. Then Mandell’s theorem states
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Theorem 5.1. Two finite type, nilpotent spaces X and Y are weakly equivalent if and only if the
integral cochain complexes C∗(X,Z) and C∗(Y,Z) are quasi-isomorphic as E∞-algebras.

The final step of our proposed project is to dualise the proof of Mandell’s Theorem. The singular
chain complex of a space is equipped with the structure of a algebra over the cooperad whose S-module
structure in arity n is the set of natural transformations between the functors C∗(−,Z) and C∗(−,Z)⊕n

and with composition performed in the obvious way.

Remark 5.2. To tie this back to the work of Moreno-Fernández and Wierstra, recall that C∗(−,Z)⊕n

is quasi-isomorphic to C∗((−)∨n,Z).

We thus have the following conjecture.

Conjecture 4. Two nilpotent CW-complexes of finite type X and Y are weakly equivalent if and only
if the chain complexes C∗(X,Z) and C∗(Y,Z) are quasi-isomorphic as E∞-coalgebras.

Remark 5.3. Conjecture 4 is not simply the linear dual of Mandell’s theorem because the singular
(co)chain complex is not finitely generated. In fact, this conjecture is likely to be very difficult to
prove.
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